Quantification of vascular networks in photoacoustic mesoscopy
- Abstract:
- ABSTRACT Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature and has the potential to assess prognosis and therapeutic response. Currently, evaluating vasculature using mesoscopic PAI involves visual or semi-quantitative 2D measurements, which fail to capture 3D vessel network complexity, and lack robust ground truths for assessment of segmentation accuracy. Here, we developed an in silico , phantom, in vivo , and ex vivo -validated end-to-end framework to quantify 3D vascular networks captured using mesoscopic PAI. We applied our framework to evaluate the capacity of rule-based and machine learning-based segmentation methods, with or without vesselness image filtering, to preserve blood volume and network structure by employing topological data analysis. We first assessed segmentation performance against ground truth data of in silico synthetic vasculatures and a photoacoustic string phantom. Our results indicate that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Next, we applied our framework to breast cancer patient-derived xenografts (PDXs), with corresponding ex vivo immunohistochemistry. We demonstrated that the above segmentation methods can reliably delineate the vasculature of 2 breast PDX models from mesoscopic PA images. Our results underscore the importance of evaluating the choice of segmentation method when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo .
- Authors:
- E Brown, T Lefebvre, P Sweeney, B Stolz, J Gröhl, L Hacker, Z Huang, D-L Couturier, H Harrington, H Byrne, S Bohndiek
- Publication date:
- 1st Aug 2021
- Full text
- DOI