Can localised (19)F magnetic resonance spectroscopy pharmacokinetics of 5FU in colorectal metastases predict clinical response?
- Abstract:
- BACKGROUND: 5-Fluorouracil remains widely used in colorectal cancer treatment more than 40 years after its development. 19F magnetic resonance spectroscopy can be used in vivo to measure 5FU's half-life and metabolism to cytotoxic fluoronucleotides. Previous studies have shown better survival associated with longer 5FU tumour half-life. This work investigated 5FU pharmacokinetics in liver metastases of colorectal cancer. METHODS: A total of 32 subjects with colorectal cancer undergoing 5FU treatment, 15 of whom had liver metastases, were examined in a 1.5T MRI scanner, using a large coil positioned over the liver. Non-localised spectra were acquired in 1-min blocks for 32 min after injection of a 5FU bolus. The 5FU half-life was measured in each subject, and averaged spectra were examined for the presence of fluoronucleotides. Associations with progression-free survival were assessed. RESULTS: No association was observed between 5FU half-life, tumour burden and survival. Half-lives were all shorter than those associated with improved survival in the literature. Remarkably, in the group with liver metastases, high levels of fluoronucleotides were associated with poorer survival; this counterintuitive result may be due to the higher levels of fluoronucleotides (whose level is higher in tumour tissue than in normal liver) in patients with higher tumour burdens. CONCLUSIONS: It is recommended that future studies use chemical shift imaging at higher field strengths to better resolve tumour from normal liver. Non-localised spectroscopy retains prognostic potential by enabling straightforward detection of fluoronucleotides, which are present at very low concentrations distributed throughout the tissue.
- Authors:
- DJO McIntyre, FA Howe, C Ladroue, F Lofts, M Stubbs, JR Griffiths
- Journal:
- Cancer Chemother Pharmacol
- Citation info:
- 68(1):29-36
- Publication date:
- 1st Jul 2011
- Full text
- DOI