Authors:
AE Teschendorff, C Caldas
Journal name: 
Breast Cancer Res
Citation info: 
11(2):301
Abstract: 
Acquired somatic mutations are responsible for approximately 90% of breast tumours. However, only one somatic aberration, amplification of the HER2 locus, is currently used to define a clinical subtype, one that accounts for approximately 10% to 15% of breast tumours. In recent years, a number of mutational profiling studies have attempted to further identify clinically relevant mutations. While these studies have confirmed the oncogenic or tumour suppressor role of many known suspects, they have exposed complexity as a main feature of the breast cancer mutational landscape (the 'muta-ome'). The two defining features of this complexity are (a) a surprising richness of low-frequency mutants contrasting with the relative rarity of high-frequency events and (b) the relatively large number of somatic genomic aberrations (approximately 20 to 50) driving an average tumour. Structural features of this complex landscape have begun to emerge from follow-up studies that have tackled the complexity by integrating the spectrum of genomic mutations with a variety of complementary biological knowledge databases. Among these structural features are the growing links between somatic gene disruptions and those conferring breast cancer risk, mutually exclusive coexistence and synergistic mutational patterns, and a clearly non-random distribution of mutations implicating specific molecular pathways in breast tumour initiation and progression. Recognising that a shift from a gene-centric to a pathway-centric approach is necessary, we envisage that further progress in identifying clinically relevant genomic aberration patterns and associated breast cancer subtypes will require not only multi-dimensional integrative analyses that combine mutational and functional profiles, but also larger profiling studies that use second- and third-generation sequencing technologies in order to fill out the important gaps in the current mutational landscape.
DOI: 
http://doi.org/10.1186/bcr2236
Research group: 
Caldas Group
E-pub date: 
31 Aug 2009