S Martínez-Montero, GF Deleavey, A Dierker-Viik, P Lindovska, T Ilina, G Portella, M Orozco, MA Parniak, C González, MJ Damha
Journal name: 
J Org Chem
Citation info: 
We report the synthesis, thermal stability, and RNase H substrate activity of 2'-deoxy-2',4'-difluoroarabino-modified nucleic acids. 2'-Deoxy-2',4'-difluoroarabinouridine (2,'4'-diF-araU) was prepared in a stereoselective way in six steps from 2'-deoxy-2'-fluoroarabinouridine (2'-F-araU). NMR analysis and quantum mechanical calculations at the nucleoside level reveal that introduction of 4'-fluorine introduces a strong bias toward the North conformation, despite the presence of the 2'-βF, which generally steers the sugar pucker toward the South/East conformation. Incorporation of the novel monomer into DNA results on a neutral to slightly stabilizing thermal effect on DNA-RNA hybrids. Insertion of 2',4'-diF-araU nucleotides in the DNA strand of a DNA-RNA hybrid decreases the rate of both human and HIV reverse transcriptase-associated RNase H-mediated cleavage of the complement RNA strand compared to that for an all-DNA strand or a DNA strand containing the corresponding 2'-F-araU nucleotide units, consistent with the notion that a 4'-fluorine in 2'-F-araU switches the preferred sugar conformation from DNA-like (South/East) to RNA-like (North).
E-pub date: 
20 Mar 2015
Users with this publication listed: 
Guillem Portella