Authors:
Y Wallez, F Cand, F Cruzalegui, C Wernstedt, S Souchelnytskyi, I Vilgrain, P Huber
Journal name: 
Oncogene
Citation info: 
26(7):1067-1077
Abstract: 
Src-family tyrosine kinases are regulatory proteins that play a pivotal role in the disorganization of cadherin-dependent cell-cell contacts. We previously showed that Src was associated with vascular endothelial (VE)-cadherin and that tyrosine phosphorylation level of VE-cadherin was dramatically increased in angiogenic tissues as compared to quiescent tissues. Here, we examined whether VE-cadherin was a direct substrate for Src in vascular endothelial growth factor (VEGF)-induced VE-cadherin phosphorylation, and we identified the target tyrosine sites. Co-transfections of Chinese hamster ovary cells (CHO) cells with VE-cadherin and constitutively active Src (Y530F) resulted in a robust tyrosine phosphorylation of VE-cadherin that was not detected with kinase-dead Src (K298M). In an in vitro Src assay, the VE-cadherin cytoplasmic domain is directly phosphorylated by purified Src as well as the tyrosine residue 685 (Tyr)685-containing peptide RPSLY(685)AQVQ. VE-cadherin peptide mapping from human umbilical vein endothelial cells stimulated by VEGF and VE-cadherin-CHO cells transfected with active Src revealed that Y685 was the unique phosphorylated site. The presence of PhosphoY685 was confirmed by its ability to bind to C-terminal Src kinase-SH2 domain in a pull-down assay. Finally, we found that in a VEGF-induced wound-healing assay, cadherin adhesive activity was impaired by Src kinase inhibitors. These data identify that VEGF-induced-VE-cadherin tyrosine phosphorylation is mediated by Src on Y685, a process that appears to be critical for VEGF-induced endothelial cell migration.
DOI: 
http://doi.org/10.1038/sj.onc.1209855
E-pub date: 
15 Feb 2007