Authors:
DC Rio, M Ares, GJ Hannon, TW Nilsen
Journal name: 
Cold Spring Harb Protoc
Citation info: 
2010(6):pdb.prot5445
Abstract: 
INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.
DOI: 
http://doi.org/10.1101/pdb.prot5445
Research group: 
Hannon Group
E-pub date: 
01 Jun 2010
Users with this publication listed: 
Greg Hannon