SWP Wijnhoven, E Zwart, EN Speksnijder, RB Beems, KP Olive, DA Tuveson, J Jonkers, MM Schaap, J van den Berg, T Jacks, H van Steeg, A de Vries
Journal name: 
Cancer Res
Citation info: 
The tumor suppressor gene p53 has an apparent role in breast tumor development in humans, as approximately 30% of sporadic tumors acquire p53 mutations and Li-Fraumeni syndrome patients carrying germ line p53 mutations frequently develop breast tumors at early age. In the present study, conditional expression of a targeted mutation is used to analyze the role of the human R273H tumor-associated hotspot mutation in p53 in mammary gland tumorigenesis. Heterozygous p53(R270H/+)WAPCre mice (with mammary gland-specific expression of the p53.R270H mutation, equivalent to human R273H, at physiologic levels) develop mammary tumors at high frequency, indicating that the R270H mutation predisposes for mammary gland tumor development and acts in a dominant-negative manner in early stages of tumorigenesis. Spontaneous tumor development in these mice is further accelerated by 7,12-dimethylbenz(a)anthracene (DMBA) treatment at young age. The majority of spontaneous and DMBA-induced carcinomas and sarcomas from p53(R270H/+)WAPCre mice is estrogen receptor alpha positive, and expression profiles of genes also implicated in human breast cancer appear similarly altered. As such, p53(R270H/+)WAPCre mice provide a well-suited model system to study the role of p53 in breast tumorigenesis and the responsiveness of mammary gland tumors to chemotherapeutics.
E-pub date: 
31 Aug 2005
Users with this publication listed: 
David Tuveson