M Mishkovsky, B Anderson, M Karlsson, MH Lerche, AD Sherry, R Gruetter, Z Kovacs, A Comment
Journal name: 
Sci Rep
Citation info: 
The mammalian brain relies primarily on glucose as a fuel to meet its high metabolic demand. Among the various techniques used to study cerebral metabolism, 13C magnetic resonance spectroscopy (MRS) allows following the fate of 13C-enriched substrates through metabolic pathways. We herein demonstrate that it is possible to measure cerebral glucose metabolism in vivo with sub-second time resolution using hyperpolarized 13C MRS. In particular, the dynamic 13C-labeling of pyruvate and lactate formed from 13C-glucose was observed in real time. An ad-hoc synthesis to produce [2,3,4,6,6-2H5, 3,4-13C2]-D-glucose was developed to improve the 13C signal-to-noise ratio as compared to experiments performed following [U-2H7, U-13C]-D-glucose injections. The main advantage of only labeling C3 and C4 positions is the absence of 13C-13C coupling in all downstream metabolic products after glucose is split into 3-carbon intermediates by aldolase. This unique method allows direct detection of glycolysis in vivo in the healthy brain in a noninvasive manner.
E-pub date: 
31 Aug 2017
Users with this publication listed: 
Arnaud Comment