JA Fantes, E Boland, J Ramsay, D Donnai, M Splitt, JA Goodship, H Stewart, M Whiteford, P Gautier, L Harewood, S Holloway, F Sharkey, E Maher, V van Heyningen, J Clayton-Smith, DR Fitzpatrick, GCM Black
Journal name: 
Am J Hum Genet
Citation info: 
We report fluorescence in situ hybridization (FISH) mapping of 152, mostly de novo, apparently balanced chromosomal rearrangement (ABCR) breakpoints in 76 individuals, 30 of whom had no obvious phenotypic abnormality (control group) and 46 of whom had an associated disease (case group). The aim of this study was to identify breakpoint characteristics that could discriminate between these groups and which might be of predictive value in de novo ABCR (DN-ABCR) cases detected antenatally. We found no difference in the proportion of breakpoints that interrupted a gene, although in three cases, direct interruption or deletion of known autosomal-dominant or X-linked recessive Mendelian disease genes was diagnostic. The only significant predictor of phenotypic abnormality in the group as a whole was the localization of one or both breakpoints to an R-positive (G-negative) band with estimated predictive values of 0.69 (95% CL 0.54-0.81) and 0.90 (95% CL 0.60-0.98), respectively. R-positive bands are known to contain more genes and have a higher guanine-cytosine (GC) content than do G-positive (R-negative) bands; however, whether a gene was interrupted by the breakpoint or the GC content in the 200 kB around the breakpoint had no discriminant ability. Our results suggest that the large-scale genomic context of the breakpoint has prognostic utility and that the pathological mechanism of mapping to an R-band cannot be accounted for by direct gene inactivation.
E-pub date: 
01 Apr 2008
Users with this publication listed: 
Louise Harewood