Authors:
TM Campbell, MAA Castro, KG de Oliveira, BAJ Ponder, KB Meyer
Journal name: 
Cancer Res
Citation info: 
78(2):410-421
Abstract: 
Two opposing clusters of transcription factors (TF) have been associated with the differential risks of estrogen receptor positive or negative breast cancers, but the mechanisms underlying the opposing functions of the two clusters are undefined. In this study, we identified NFIB and YBX1 as novel interactors of the estrogen receptor (ESR1). NFIB and YBX1 are both risk TF associated with progression of ESR1-negative disease. Notably, they both interacted with the ESR1-FOXA1 complex and inhibited the transactivational potential of ESR1. Moreover, signaling through FGFR2, a known risk factor in breast cancer development, augmented these interactions and further repressed ESR1 target gene expression. We therefore show that members of two opposing clusters of risk TFs associated with ESR1-positive and -negative breast cancer can physically interact. We postulate that this interaction forms a toggle between two developmental pathways affected by FGFR2 signaling, possibly offering a junction to exploit therapeutically.Significance: Binding of the transcription factors NFIB and YBX1 to the estrogen receptor can promote an estrogen-independent phenotype that can be reverted by inhibiting FGFR2 signaling. Cancer Res; 78(2); 410-21. ©2017 AACR.
DOI: 
http://doi.org/10.1158/0008-5472.CAN-17-1153
Research group: 
Ponder Group
E-pub date: 
15 Jan 2018