Authors:
J Wang, F Kreis, AJ Wright, RL Hesketh, MH Levitt, KM Brindle
Journal name: 
Magn Reson Med
Citation info: 
79(2):741-747
Abstract: 
PURPOSE: Dynamic magnetic resonance spectroscopic imaging of hyperpolarized 13 C-labeled cell substrates has enabled the investigation of tissue metabolism in vivo. Currently observation of these hyperpolarized substrates is limited mainly to 13 C detection. We describe here an imaging pulse sequence that enables proton observation by using polarization transfer from the hyperpolarized 13 C nucleus to spin-coupled protons. METHODS: The pulse sequence transfers 13 C hyperpolarization to 1 H using a modified reverse insensitive nuclei enhanced by polarization transfer (INEPT) sequence that acquires a fully refocused echo. The resulting hyperpolarized 1 H signal is acquired using a 2D echo-planar trajectory. The efficiency of polarization transfer was investigated using simulations with and without T1 and T2 relaxation of both the 1 H and 13 C nuclei. RESULTS: Simulations showed that 1 H detection of the hyperpolarized 13 C nucleus in lactate should increase significantly the signal-to-noise ratio when compared with direct 13 C detection at 3T. However the advantage of 1 H detection is expected to disappear at higher fields. Dynamic 1 H images of hyperpolarized [1-13 C]lactate, with a spatial resolution of 1.25 × 1.25 mm2 , were acquired from a phantom injected with hyperpolarized [1-13 C]lactate and from tumors in vivo following injection of hyperpolarized [1-13 C]pyruvate. CONCLUSIONS: The sequence allows 1 H imaging of hyperpolarized 13 C-labeled substrates in vivo. Magn Reson Med 79:741-747, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOI: 
http://doi.org/10.1002/mrm.26725
Research group: 
Brindle Group
E-pub date: 
01 Feb 2018