Authors:
M Pirouz, P Du, M Munafò, RI Gregory
Journal name: 
Cell Rep
Citation info: 
16(7):1861-1873
Abstract: 
Mutations in the 3'-5' exonuclease DIS3L2 are associated with Perlman syndrome and hypersusceptibility to Wilms tumorigenesis. Previously, we found that Dis3l2 specifically recognizes and degrades uridylated pre-let-7 microRNA. However, the widespread relevance of Dis3l2-mediated decay of uridylated substrates remains unknown. Here, we applied an unbiased RNA immunoprecipitation strategy to identify Dis3l2 targets in mouse embryonic stem cells. The disease-associated long noncoding RNA (lncRNA) Rmrp, 7SL, as well as several other Pol III-transcribed noncoding RNAs (ncRNAs) were among the most highly enriched Dis3l2-bound RNAs. 3'-Uridylated Rmrp, 7SL, and small nuclear RNA (snRNA) species were highly stabilized in the cytoplasm of Dis3l2-depleted cells. Deep sequencing analysis of Rmrp 3' ends revealed extensive oligouridylation mainly on transcripts with imprecise ends. We implicate the terminal uridylyl transferases (TUTases) Zcchc6/11 in the uridylation of these ncRNAs, and biochemical reconstitution assays demonstrate the sufficiency of TUTase-Dis3l2 for Rmrp decay. This establishes Dis3l2-mediated decay (DMD) as a quality-control pathway that eliminates aberrant ncRNAs.
DOI: 
http://doi.org/10.1016/j.celrep.2016.07.025
E-pub date: 
31 Jul 2016
Users with this publication listed: 
Marzia Munafo