RA Williamson, D Natalia, CK Gee, G Murphy, MD Carr, RB Freedman
Journal name: 
Eur J Biochem
Citation info: 
The aggregation of recombinant proteins into inclusion bodies is a major problem for expression in bacterial systems. The inclusion bodies must be solubilized and the denatured protein renatured if an active molecule is to be recovered. We have developed such a procedure for the active N-terminal domain of tissue inhibitor of metalloproteinases-2 [TIMP-2-(1-127)], a small mammalian protein containing three disulfide bonds. Conditions for its renaturation were determined by studying the refolding behaviour of reduced and denatured mammalian-cell-expressed TIMP-(1-127) by intrinsic fluorescence. This strategy allows the development of a refolding protocol before generation of a bacterial expression system, and allows rapid and systematic optimization of each refolding variable by assessing its effect on the rate and extent of the refolding reaction. TIMP-(1-127) was expressed at high levels in Escherichia coli, and refolded from TIMP-2-(1-127) inclusion bodies, by means of the method developed with mammalian-cell-expressed protein, to give a refolding efficiency of 30-40% and a final yield of 11-14 mg purified protein/l culture. The chemical structure and conformation of this material was characterized by electrospray mass spectrometry and two-dimensional 1H-NMR; no significant differences were found between it and the native protein. Mass analysis of uniformly 13C-labeled and 15N-labeled protein was used to help identify a mistranslated TIMP-(1-127) contaminant in the purified refolded sample. This technique provides additional information on the nature of the modification and allows a distinction to be made between those modifications that are cell derived, and those that arise from subsequent handling of the protein.
E-pub date: 
30 Sep 1996
Users with this publication listed: 
Gillian Murphy