Authors:
DT Odom, EA Dill, JK Barton
Journal name: 
Nucleic Acids Res
Citation info: 
29(10):2026-2033
Abstract: 
Long range oxidative damage as a result of charge transport is shown to occur through single crossover junctions assembled from four semi-complementary strands of DNA. When a rhodium complex is tethered to one of the arms of the four-way junction assembly, thereby restricting its intercalation into the pi-stack, photo-induced oxidative damage occurs to varying degrees at all guanine doublets in the assembly, though direct strand scission only occurs at the predicted site of intercalation. In studies where the Mg(2+) concentration was varied, so as to perturb base stacking at the junction, charge transport was found to be enhanced but not to be strongly localized to the arms that preferentially stack on each other. These data suggest that the conformations of four-way junctions can be relatively mobile. Certainly, in four-way junctions charge transport is less discriminate than in the more rigidly stacked DNA double crossover assemblies.
DOI: 
http://doi.org/10.1093/nar/29.10.2026
Research group: 
Odom Group
E-pub date: 
30 Apr 2001
Users with this publication listed: 
Duncan Odom