Authors:
B Herdy, C Mayer, D Varshney, G Marsico, P Murat, C Taylor, C D'Santos, D Tannahill, S Balasubramanian
Journal name: 
Nucleic Acids Res
Abstract: 
RNA G-quadruplexes (rG4s) are secondary structures in mRNAs known to influence RNA post-transcriptional mechanisms thereby impacting neurodegenerative disease and cancer. A detailed knowledge of rG4-protein interactions is vital to understand rG4 function. Herein, we describe a systematic affinity proteomics approach that identified 80 high-confidence interactors that assemble on the rG4 located in the 5'-untranslated region (UTR) of the NRAS oncogene. Novel rG4 interactors included DDX3X, DDX5, DDX17, GRSF1 and NSUN5. The majority of identified proteins contained a glycine-arginine (GAR) domain and notably GAR-domain mutation in DDX3X and DDX17 abrogated rG4 binding. Identification of DDX3X targets by transcriptome-wide individual-nucleotide resolution UV-crosslinking and affinity enrichment (iCLAE) revealed a striking association with 5'-UTR rG4-containing transcripts which was reduced upon GAR-domain mutation. Our work highlights hitherto unrecognized features of rG4 structure-protein interactions that highlight new roles of rG4 structures in mRNA post-transcriptional control.
DOI: 
http://doi.org/10.1093/nar/gky861
Research group: 
Balasubramanian Group
E-pub date: 
31 Aug 2018