Authors:
A Bugaut, S Balasubramanian
Journal name: 
Biochemistry
Citation info: 
47(2):689-697
Abstract: 
G-Rich sequences found within biologically important regions of the genome have been shown to form intramolecular G-quadruplexes with varied loop lengths and sequences. Many of these quadruplexes will be distinguishable from each other on the basis of their thermodynamic stabilities and folded conformations. It has been proposed that loop lengths can strongly influence the topology and stability of intramolecular G-quadruplexes. Previous studies have been limited to the analysis of quadruplex sequences with particular loop sequences, making it difficult to make generalizations. Here, we describe an original study that aimed to elucidate the effect of loop length on the biophysical properties of G-quadruplexes in a sequence-independent context. We employed UV melting and circular dichroism spectroscopy to examine and compare the properties of 21 DNA quadruplex libraries, each comprising partially randomized loop sequences with lengths ranging from one to three nucleotides. Our work supports a number of general predictions that can be made solely on the basis of loop lengths. In particular, the results emphasize the strong influence of single-nucleotide loops on quadruplex properties. This study provides a predictive framework that may help identify or classify biologically relevant G-quadruplex-forming sequences.
DOI: 
http://doi.org/10.1021/bi701873c
Research group: 
Balasubramanian Group
E-pub date: 
15 Jan 2008