S Rickling, L Ghisdavu, F Pierard, P Gerbaux, M Surin, P Murat, E Defrancq, C Moucheron, A Kirsch-De Mesmaeker
Journal name: 
Citation info: 
The rigid dinuclear [(tap)(2)Ru(tpac)Ru(tap)(2)](4+) complex (1) (TAP=1,4,5,8-tetraazaphenanthrene, TPAC=tetrapyridoacridine) is shown to be much more efficient than the mononuclear bis-TAP complexes at photodamaging oligodeoxyribonucleotides (ODNs) containing guanine (G). This is particularly striking with the G-rich telomeric sequence d(T(2)AG(3))(4). Complex 1, which interacts strongly with the ODNs as determined by surface plasmon resonance (SPR) and emission anisotropy experiments, gives rise under illumination to the formation of covalent adducts with the G units of the ODNs. The yield of photocrosslinking of the two strands of duplexes by 1 is the highest when the G bases of each strand are separated by three to four base pairs. This corresponds with each Ru(tap)(2) moiety of complex 1 forming an adduct with the G base. This separation distance of the G units of a duplex could be determined thanks to the rigidity of complex 1. On the basis of results of gel electrophoresis, mass spectrometry, and molecular modelling, it is suggested that such photocrosslinking can also occur intramolecularly in the human telomeric quadruplex d(T(2)AG(3))(4).
E-pub date: 
06 Apr 2010
Users with this publication listed: 
Pierre Murat